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ABSTRACT
Purpose To develop and evaluate methods for conducting
adaptive population pharmacokinetic bridging studies.
Methods An adaptive D-optimal design based on optimization
of the population Fisher information matrix was used to deter-
mine the best sampling schedule for a target-population. Re-
cruitment of the target-population was divided into batches and
patients are assumed to enrol by batch. A prior-population
model was used to determine the optimal sampling schedule
for the first batch and to stabilise the data analysis in the interim
iteration. Simulation studies were performed under two sce-
narios (1) the prior- and target-populations have similar phar-
macokinetic profiles and (2) the pharmacokinetic profiles
diverge significantly. A design criterion to determine early full
enrolment was also proposed.
Results The target-population estimates obtained using the
proposed method were compared to estimates obtained if
the target-population was studied with a design optimized
based on the prior-population model. The proposed method
is shown to be not inferior in scenario (1) and superior in
scenario (2). The criterion to determine early full enrolment
was proven to be effective.
Conclusions An adaptive optimal design method together with
an early full enrolment criterion were evaluated and resulted in
more accurate estimates for the target-population in bridging
studies.

KEY WORDS adaptive design . bridging studies . optimal
design . pharmacokinetics

INTRODUCTION

As defined in the International Conference onHarmonization
E5 guideline, “A bridging study is a supplementary study
conducted in a new region to provide information on efficacy,
safety, dosage and dosing regimen of a drug for extrapolation
of foreign clinical data” (1). Data generated from the bridging
study in the new region is evaluated for similarity with data
from an original region for the purpose of extrapolation. In
order to determine the efficacy, safety, dosage and dosing
regimen of a drug, the understanding of the time course of
the drug effect is essential and this knowledge is gained by
modelling the pharmacokinetic-pharmacodynamic (PKPD) of
the drug. In many cases it is sufficient to show the same dose-
exposure relationship (Pharmacokinetic (PK)) between the
original and new region (2).

Some researchers have proposed to use optimal design
methods based on the Fisher information theory to find the
best design for PKPD studies. These designs which allow for
a parsimonious experiment provide a high level of efficiency
in PKPD parameter estimation (3–5). The main drawback
of optimal design in PKPD is the dependency of the design
on both the model and prior parameter values due to the
statistical non-linearity inherent in PK and PKPD models.
Various robust design methods have been developed to
address this dependency issue by incorporating a prior dis-
tribution for the parameters (6–9).

Generally, a design obtained with various optimization
methods remains fixed throughout a study and data will be
analysed after completion of the study. An adaptive design,
as opposed to a fixed study design, involves interim data
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analyses for data accrual during the study and provides the
basis for fine tuning the design. In a clinical trial setting,
adaptive designs are carried out by enrolling patients in
batches. Data accumulated during the study will be analysed
to determine the design for the next batch. The most com-
mon application of adaptive designs for clinical trials is to
determine the maximum tolerated dose, a common end-
point in oncology studies using design methods such as the
continuous reassessment method (10).

Recently adaptive design for clinical trial has sparked con-
siderable discussion among researchers i.e., a special issue of
Journal of Biopharmaceutical Statistics (11) was devoted to
this topic. Application of adaptive design to improve dose-
ranging in clinical development has been studied by Born-
kamp et al. (12). They conducted a comprehensive simulation
study to develop and evaluate adaptive dose finding design by
comparing several methods including the traditional ANOVA
method and concluded that adaptive design performed sub-
stantially better than the traditional method. Bandyopadhyay
and Dragalin (13) developed an adaptive design method with
sample size re-estimation and developed a stopping rule for
early completion of a bioequivalence study of a test formula-
tion to a reference formulation of a drug. They showed that
the adaptive design method lead to an early stopping by
demonstrating bioequivalent conclusively. In further work,
Dragalin et al. (14) proposed a three stages adaptive design
method for dose finding in a clinical trial with a continuous
efficacy endpoint. D-optimal design was used to determine
both dose location and patient allocation in the third stage.
They demonstrated the advantage of the method with five
different dose-response models. The benefit of applying opti-
mal design in phase II clinical studies for exposure-response
modelling was demonstrated by Maloney et al. (15) and they
suggested that the optimal adaptive design approach is worth
exploring as a future step.

One of the reasons for bridging studies is to minimize
duplication of clinical data in the new region. Thus, knowl-
edge of PKPD from the original region can be used to locate
the optimal design to study the new region. The optimal
design can be applied directly as a fixed study design where
all patients in the new region will be enrolled following this
design in a single-go. However, a single-go fixed study
assumes the PKPD characteristics of the patients in the
new region to be similar to patients in the original region
otherwise the design will be suboptimal and possibly fail.
Maloney et al. (16) demonstrated with a simulation example
that optimal design methods when used adaptively were
shown to perform well compared to a fixed optimal design.
Thus, we will explore the applicability of adaptive-optimal
design in the context of PK bridging studies.

In this project, we have applied adaptive D-optimal
design to PK studies bridging from a population in an
original region (termed prior-population) to a population

in a new region (termed target-population). The purpose of
the bridging study is to estimate the parameters of the PK
model of the target-population. Our work builds on the
substantial work of others in optimal design and adaptive
design as mentioned in literatures in preceding paragraphs.
The purpose of this study is to evaluate an adaptive D-optimal
design in the setting of nonlinear mixed effects models. The D-
optimal design is obtained by maximizing the determinant of
the population Fisher information matrix and population
approach is used in the model fitting. We want to highlight
that in this project the prior-population data was not intended
for extrapolation into the target-population or to be combined
with the target-population data for a final pooled analysis but
rather was used for the purposes of determining the initial
design for the target-population and to stabilise the data
analyses in the interim iteration.

This paper is organized as follows. The detailed
procedure of our proposed method to perform an adap-
tive D-optimal design for bridging studies is presented
in “Materials and Methods”, where we also proposed a
criterion to determine early full enrolment. Two simu-
lation scenarios for two hypothetical examples are intro-
duced in “Simulation Studies”. The proposed methods
were evaluated under these two scenarios and the results are
presented which are followed by discussion and conclusion.

MATERIALS AND METHODS

We have termed our proposed procedure of the adaptive
D-optimal design for bridging studies the D-optimal ABS (D-
optimal Adaptive Bridging Studies). The recruitment of the
target-population in theD-optimal ABS is divided into batches
and patients are assumed to enrol by batch. A criterion which
can be used to determine early full enrolment for all the
remaining target-population patients in the interim iteration
is also proposed. The performances of both methods were
accessedusing simulation studies of twohypothetical examples.

D-optimal ABS

In the D-optimal ABS, Sprior represents the total number of
subjects enrolled from the prior-population, Starget represents
the total number of subjects from the target-population which
is divided equally into B batches and to be enrolled by batch.

We assumed that Starget has been defined a priori and is
based on either prior experience, an agreement with the
regulatory agency, based on clinical practicalities or a combi-
nation of all of these processes. It is, of course, possible to
optimise the value of Starget but this is not the subject of the
current analysis. Finally, we initiate the bridging study under
the general assumption that the prior- and target-populations
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are similar. However, it will be seen, that this assumption is
not a requirement for the D-optimal ABS described here.

A pooled data set that combined the samples from both the
prior-population patients and target-population patients is used
at each iteration for both model fitting and optimal design. We
use a pooled data set for the D-optimal ABS since the small
number of patients at each iteration of the target-population
may not provide sufficient data to get stable parameter esti-
mates, and therefore may potentially mislead the optimal de-
sign. Two types of models are fitted to the pooled data set for
the purpose of parameter estimation. One is termed the
“pooled model” where prior and target patients are treated as
if they arose from the same population. For the second type of
model, a flag is added to the pooled data set to label whether a
patient is from the prior- or the target-population. A model is
then fitted to the data set (with the flag) which allows for two
different sets of estimates of the PK fixed and random effects to
represent the two populations of the prior and target. However,
a single pooled residual variance is estimated that accounts for
residual variability across both data sets. This model is termed a
“covariate model”, where the flag that accounts for a “popula-
tion effect” is treated as a covariate in the model. All D-optimal
designs in this work are based on the pooled model that arises
from the pooled data. We used the covariate model for two
settings (1) to illustrate the apparent properties of the D-optimal
ABS method to converge to the correct solution when we used
the pooled model for design and (2) to evaluate the criterion to
determine early full enrolment.

Procedure for D-optimal ABS

Initialisation Step. Data from the Sprior patients have already

been collected following a previous design x 0f g
� �

. A model

has been fitted to the data and from this model and param-

eter estimates a D-optimal design ðx 1f gÞ is determined. This
D-optimal design is entirely conditioned on the model from
the prior data set without, at this point, any consideration of
differences that may exist between the prior and target. The
total number of patients from the target-population (Starget)
is assumed to be known a priori and divided into B batches.
Target patients will then be enrolled by batch at each
iteration b ðb ¼ 1; � � � ; BÞ in the D-optimal ABS. The first
batch target-population patients is enrolled and data is

collected according to x 1f g:

Iteration b in D-optimal ABS ðb ¼ 1; � � � ; BÞ

Step 1. The prior-population data is reduced by the same
proportion as the target-population has increased. For example
if Sprior0100 and Starget050, and 20% of Starget (10 patients out
of 50) were enrolled from the target-population at the bth batch
then 20% of Sprior (20 patients out of 100) will be removed (at

random) from the prior-population. A pooled data set of
patients is constructed by combining the bth batch of patients
from the target population with the previous batches ðb ¼
1; � � � ; b� 1Þ from the target-population, together with the
reduced prior-population patients. At this point the total num-

ber of subjects in the pooled data set is denoted as S bf g
pooled. Thus

S bf g
pooled ¼ 1� Pb

m¼1
a mf g

� �
� Sprior þ

Pb
m¼1

a mf g � Starget;

b ¼ 1; � � � ;B; PB
m¼1

a mf g ¼ 1;
ð1Þ

where α is the proportion of accumulation in the target-
population patients (α00.2 in the previous example) and B is
the total number of batches.

Two ways for reducing the proportion of the prior-
population data have been considered in this study. The first
is to reduce the prior-population data in each iteration arith-
metically according to the number of batches of the target-
population (B) where a bf g ¼ 1

B ; b ¼ 1; � � � ;B. The second is
to reduce the prior-population data geometrically where the
prior-population data in the current iteration is half of the
previous iteration, thus

a 1f g ¼ 1
2
;

a bf g ¼ 1
2
� a b�1f g; b ¼ 2; � � � ;B � 1;

a Bf g ¼ 1�
XB�1

b¼1

a bf g:

ð2Þ

Thus we allow α to vary by iteration in the geometric
accumulation and we consider α to take a fixed value in the
arithmetic accumulation in this work.

Step 2. A pooled model is fitted to the pooled data set
(without distinction to which population each subject arose)

and a D-optimal design, x bþ1f g, is located for the new model
which is then applied to collect samples from the next batch (b
+ 1) target-population patients. Thus

x bþ1f g ¼ argmax
x

S bf g
pooled � Mðbq bf g

pooled; xÞ
��� ���� �

;

b ¼ 1; � � � ;B: ð3Þ

where bq bf g
pooled is a vector of parameter estimates that were

obtained by fitting the pooled model to the pooled data at
iteration b and M �ð Þj j denotes the determinant of the Fisher
information matrix.

Step 3. Data are collected from the (b+1)th batch of

patients from the target-population according to x bþ1f g.
Step 2 and 3 are repeated until all batches have been
enrolled.
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For simplicity we have assumed that there is a single
sampling schedule for each batch of target-population patients

where Mðbθ;xÞ are elementary information matrices which
characterize the information from a single individual. We also
make the simplifying assumption that all patients in the prior-
population arise from the same design. However, these
assumptions are not a requirement of the process.

Criterion to Determine Early Full Enrolment

In this section we proposed a criterion to determine early full
enrolment for the D-optimal ABS. The basis for early full
enrolment is determined when the current design is sufficiently
optimal that all the remaining patients in the target-population
can be enrolled in the next batch. The covariate model is used
for this purpose where a flag is added to the data set to indicate
if a patient arises from the prior- or the target-populations.
Thus after the enrolment of bth batch of patients from the
target-population, a covariate model is fit to the data set. A

product D-optimal design x bþ1f g
prodD is located for the covariate

model which optimizes simultaneously across the prior-

population estimates bq bf g
prior

� �
and the target-population esti-

mates bq bf g
target

� �
in the covariate model. In addition, a local D-

optimal design x bþ1f g
target is located that optimizes solely at bq bf g

target

(the estimates of the target-population in the covariate model).
Thus

x bþ1f g
prodD ¼ argmax

x

1
2

ln 1�
Xb
m¼1

a mf g
 !

� Sprior � M bθ bf g
prior; x

� ���� ���
" # (

þ ln
Xb
m¼1

a mf g � Starget � M bθ bf g
target; x

� ���� ���
" #!)

x bþ1f g
target ¼ argmax

x

Xb
m¼1

a mf g � Starget � M bθ bf g
target; x

� ���� ���
( )

;

b ¼ 1; � � � ;B;
XB
m¼1

a mf g ¼ 1:

ð4Þ

Under the assumption that x bþ1f g
target is the best design to

study the target-population and bq bf g
target in the covariate

model is the vector of best estimates for the target-
population PK parameters, the efficiency of the product
design at iteration b can then be assessed as

D�efficiency ¼
M bq bf g

target; x
bþ1f g
prod D

� ���� ���
M bq bf g

target; x
bþ1f g

target

� ���� ���
0
B@

1
CA

1=p

; ð5Þ

where p is the total number of fixed and random effects
parameters to be estimated in the target-population. Note, the
model has the same structure for both prior and target and
hence p is the same value for both populations. If the D-
efficiency is not less than a predefined critical value at the

current iteration then this indicates that x bþ1f g
prod D has achieved

the desired efficiency and all remaining patients from the target-

population can be enrolled following x bþ1f g
prod D as the study design.

The procedure of our proposed method for determining
an early full enrolment is as follows (the initialisation step is
the same as in the D-optimal ABS).

Evaluation of the Criteria

Step 1. The bth batch of target-population data is combined
with the previous batches (b 0 1; � � � ; b� 1) and with the
prior-population that has been reduced proportionally. A flag
is added to the dataset to label which population the patient
belongs to and a covariate model that allows the fixed effects
and variance of the random effects estimates to differ between
the prior- and target-population is fitted to the data set. Note,
a single pooled residual variance is estimated that accounts for
residual variability across both data sets.

Step 2. The product design x bþ1f g
prodD

� �
and local design

x bþ1f g
target

� �
are found and the D-efficiency of the product

design is calculated as in Eq. 5.

Step 3. If the D-efficiency is not less than the predefined critical

value then x bþ1f g
prodD is used as the study design for all the remain-

ing patients from the target-population. If the D-efficiency is
less than the predefined critical value then the next batch (b+ 1)
of target-population patients is enrolled and data is collected

according to x bþ1f g
prodD , and steps 2 and 3 are repeated.

In this project, we have set the critical value to 0.8 in our
simulation studies. The choice of 0.8 is empirical and based on
previous experience of accounting for loss of optimality in the
population design setting. This value should provide an over-
all design that performs acceptably. It is not within the scope
of this project to investigate other values and indeed 0.7 or 0.9
might also achieves reasonable effects.

Simulation Studies

Simulation studies based on two different scenarios were car-
ried out to assess the performance of the proposed methods.
Both examples presented below are hypothetical and intended
to provide clinical context for the simulation studies. We have
considered a fixed target-population sample size thus the
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number of patients in the target-population was assumed to be
known and fixed in advance. The number of patients in the
target-population were divided into a fixed number of batches
and subsequently assumed to be enrolled by batch.

All simulations were carried out in MATLAB version 2009
(a). NONMEM VI was called within MATLAB for the model
fitting and the estimation method used in NONMEM is the
FOCE method with interaction. The D-optimal design was
obtained using POPT (17) where simulated annealing was used
in simulation scenario 1 and exchange algorithm in simulation
scenario 2. Each clinical study was replicated 100 times and the
range of admissible sampling times was 0 to 24 h post-dose.

Simulation Scenario 1: D-optimal ABS from Adult Patient
to Paediatric Patient

The first simulation scenario is a bridging study based on a
hypothetical example where the prior-population is adults
and the target-population is children. The drug was as-
sumed to be a small molecule drug and was given orally.
The PK model was set to follow a first-order input and first-
order output one-compartment model (termed as Bateman
model). In this scenario the difference between paediatric
and adult patients was provided entirely by allometry.
Hence in this scaled case the adult and paediatric profiles
were indeed very similar (see Fig. 1a). This simulation sce-
nario therefore provides a positive control in the sense that a
study designed solely based on the prior data and applied
directly to the target-population would be expected to per-
form well.

The PK model is defined as

Cij ¼ D�kai
Vi� kai�kið Þ exp �ki � tij

� �� exp �kai � tij
� �	 
� exp "pij

� �þ "aij ;

ki ¼ CLi
Vi

; q1 ¼ ðCLi ; Vi; kaiÞ0; ln q1 � MVN ln m1;W1ð Þ:
ð6Þ

Cij is the jth observed drug concentration of ith patient at
time tij. D is the given dose. The parameters (θ1) for this
model are clearance (CL), volume of distribution (V) and the
absorption rate constant (ka) which were assumed to follow a
multivariate lognormal distribution with nominal mean μ1
and variance-covariance matrix Ω1.

Values for the nominal parameter mean of adult patient
and paediatric patient together with Ω1 are given in Table I.
The nominal parameter mean of CL and V for paediatric
patients were scaled allometrically with exponents 0.75 and
1 respectively, i.e. CL of a 20 kg paediatric is equals to (20 kg/
70 kg)0.75×CL of a 70 kg adult. The nominal mean of paedi-
atric ka was assumed to be the same as the adult patient. The
variances of the between subject variability were assumed to
be the same with a value of 0.1 for both populations. εp is the
proportional error and εa is the additive error. Both errors
were assumed to be independently and identically normally
distributed with "pij � N ð0; 0:1Þ and "aij � N 0; 0:05ð Þ:

We assumed a sample size of 200 adult patients and 25
paediatric patients. Arithmetic accumulation was consid-
ered in this simulation study. The 25 paediatric patients
were divided into five batches with five patients in each
batch. The dose was scaled based on weight only where a
dose for a 20 kg child is calculated as Dose ¼ 20=70ð Þ �
100 mg; i.e., an adult weights 70 kg will be given 100 mg of
the drug and scaled to 28.57 mg for a paediatric patient

Fig. 1 (a) The concentration time plots for simulation scenario 1. The
solid line is the concentration time plot for an adult patient of 70 kg and a
dose of 100 mg. The dashed line is the concentration time plot for a
paediatric patient who weighs 20 kg and a dose of 28.57 mg. (b) The
concentration time plots for simulation scenario 2. The solid line is the
concentration time plot for normal weight adult patient. The dashed line is
the concentration time plot for obese adult patient. The dose was assumed
to be 100 mg for both normal weight and obese patients.

Table I Nominal Parameter Mean and Variance for Adult Patient and
Paediatric Patient

θ1 madult mpaediatric Ω1

CL 4 1.56 0.1 0 0

V 20 5.71 0 0.1 0

ka 1 1 0 0 0.1
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weights 20 kg. Each of the 200 adult patients were assumed to
provide six blood samples following an empirical sampling

schedule ðx 0f gÞat time 1, 2, 4, 8, 12 and 24 h post-dose. A four

time point D-optimal design ðx 1f gÞ was located based on the
adult patient model. Sample data of the first batch of five

paediatric patients were simulated under the design x 1f g, but
using the paediatric dose and parameter values. The adult
patient data was reduced by 20% a ¼ 1

5

� �
at each iteration.

The procedure involved proportionally reducing the adult
patient (prior) data, combining the remaining adult patients’
data with batches of paediatric patients’ data, fitting the
pooled model to the pooled data set, locating a four point
D-optimal design and simulating the next batch of paediatric
patient data under that design. The process was repeated until
the last (fifth) batch of paediatric patients. In the last iteration
the data set consists of only the five batches (a total of 25)
paediatric patients. Another simulation studies was also car-
ried out for this scenario following the proposed procedure for
determining the early full enrolment.

Simulation Scenario 2: D-optimal ABS from Normal Weight
Adult to Obese Adult

The second simulation scenario is again a hypothetical scenario
in which a bridging study was proposed from normal weight
adult patients to obese adult patients for a large molecule drug
given subcutaneously. We assumed that there is delayed ab-
sorption in the obese patients due to lymphatic drainage thus
the input model followed a transit compartment model (18).
The PK is therefore defined by a system of two ordinary
differential equations (ODEs). In this scenario the two PK
profiles are quite different with the peak concentration for the
obese patients occurring at a point where there is expected to
be negligible concentrations for the non-obese patients (see
Fig. 1b). This simulation scenario provides a test case in which
it would be expected that a design based solely on the prior-
population would perform poorly for the target-population.

The pharmacokinetic model is given by:

dAð1Þ
dt

¼ D � ktri � tð ÞNi � e �ktri�tð Þ

Ni !
� ktri � kai � Að1Þ;

dAð2Þ
dt

¼ kai � Að1Þ � ki � Að2Þ;

ktri ¼ kai ¼ MTTi

Ni
; ki ¼ CLi

Vi
;

q2 ¼ ðCLi; Vi; MTTi ; NiÞ0; ln q2 � MVN ln m2;W2ð Þ:
ð7Þ

A(1) and A(2) are the amount of drug in the absorption
and central compartment respectively. ktr and ka are the
absorption rate constant of the transit compartments and
the absorption compartment which were assumed to have

the same values (ratio ofMTT over N) in our simulation. k is
the elimination rate constant and provided by the ratio of
CL over V. D is the given dose and we assumed a combined
error model thus the jth observed drug concentration of ith

patient at time tij is Cij ¼ Að2Þij
Vi

� exp "pij
� �þ "aij :

The transit compartment model is used to model delayed
absorption by interspersing a chain of transit compartments
before the absorption. If there is significant delay in drug
absorption then there will be a longer mean transit time which
is assumed to be the case for obese patients in this simulation
study. The parameters (θ2) of this model are CL (clearance), V
(volume of distribution), MTT (mean transit time) and N
(number of transit compartments). The parameters were as-
sumed to follow a multivariate lognormal distribution with
nominal mean μ2 and variance-covariance matrix Ω2.

Values of μ2 and Ω2 are given in Table II for normal
weight and obese patients. The variance of the between
subject variability of CL, V and MTT were assumed to be
the same for both populations with value 0.2. We assumed
that there is no between subject variability for N in both
populations. εp and εa were assumed to be independently
and identically normally distributed with "pij � N ð0; 0:1Þ
and "aij � N 0; 0:05ð Þ:

We assumed sample size of 60 normal weight adult patients
and 60 obese adult patients. The dose was assumed to be
100 mg for both normal weight and obese patients. Both
arithmetic accumulation and geometric accumulation were
considered in this simulation study with five batches. The five
batch arithmetic accumulation simulation study has 12 obese
patients in each batch. For the geometric accumulation, the
first batch of the five batches has 30 obese patients, followed
by second batch 15, third batch eight, forth batch four and
fifth batch the remaining three obese patients.

Data simulated for the 60 normal weight patients each
assumed to provide eight blood samples following a D-

optimal sampling schedule ðx 0f gÞ optimized at the nominal
mean of this prior-population, where the sampling times are
1.1, 1.6, 4.1, 4.6, 8.1, 8.6, a replicated time at 20.1 h post-
dose. The model was fitted to this data set and an eight time

point D-optimal design ðx 1f gÞ was located and used to
simulate the first batch of obese patients’ data. We have
not constrained the design to avoid replicate sampling time
in this simulation scenario, but would do so for a real study.
The steps of proportionally reducing the normal weight
patient data, combined remaining normal weight patients’
data with batches of obese patients’ data, fitting pooled
model to the pooled data set, locating an eight time point
D-optimal design to simulate the next batch of obese
patients’ data, were repeated till the last batch of obese
patients. Another simulation studies was also carried out
for this scenario following the proposed procedure for de-
termining the early full enrolment.
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Evaluation of the Performance of D-optimal ABS
and Early Full Enrolment Criterion

Estimates from the D-optimal ABS and the early full enrol-
ment procedure were compared to estimates obtained using
two local D-optimal designs where 1) the design based on

the prior-population model (i.e., x 1f g) was used as the design
for the whole target-population and 2) the design optimized
at the target-population mean parameter values (unknown
in a real life experiment) which is labelled as ξT.

The percentage relative error (%RE) was used to com-
pare the bias in the estimates of each of the population PK
parameters and was calculated as

%RE ¼ bμ� μtarget

μtarget
� 100%; ð8Þ

where bμ is the parameter estimate and μtarget is the nominal
mean of the target-population.

RESULTS

One hundred simulations of the D-optimal ABS were run for
each of the two simulation scenarios. The results of estimation
error for the pooled and the covariate model with arithmetic
accumulation in simulation scenario 1, and estimation error
for the five batch covariate model with arithmetic accumula-
tion in simulation scenario 2 for the 100 D-optimal ABS are
presented below. The geometric accumulation in simulation
scenario 2 provided similar result as the arithmetic accumu-
lation and thus is not presented. One hundred simulations
were also carried out to access the early full enrolment crite-
rion for each of the simulation scenario and the results are
presented.

Simulation Scenario 1: D-optimal ABS
from Adult Patients to Paediatric Patients

The %RE of the estimates of CL, V, ka, w2
CL , w

2
V , w

2
ka, σ

2
"P
and

σ2
"a
in each iteration for the pooled model are shown in Fig. 2.

The %RE of the estimates of CL and V were reduced and

approached zero in the last (fifth) iteration. However, the%RE
of the estimates of ka seems to increase between iterations. This
is due to our choice of the nominal mean parameter value of ka
which was assumed to be the same for both adult and paedi-
atric. The less precise estimate was caused by the reduction in
the pooled patient number from 165 (160 adults together with
5 pediatrics) in the first iteration to 25 (all five batches of
paediatric) in the fifth iteration. The %RE of the estimates of
w2
CL and w

2
V did not show monotonic trend between iterations.

The %RE increased from iteration 1 to 4 then reduced to
around zero in the last iteration. The bias in the estimates of
w2
CL and w

2
V is large in the interim iterations because they were

estimates from the pooled model that fit to the pooled data set
(which consists of data simulated from two populations with
same nominal variances but different nominal mean), and
hence the variances estimates are inflated. The %RE of the
estimates of w2

ka has the same patent as the %RE of the
estimates of ka since the nominal mean and variance of ka were
assumed to be the same for both populations. Again we see a
reduction in the number of patient’ result in less accurate
estimates, which is also the same for estimates of σ2

"P
and σ2

"a
.

The estimates of paediatric patients can be seen to ap-
proach gradually to the true parameter values when the
covariate model is fitted to the same data set for the purpose
of illustration (see Fig. 3). By fitting the covariate model, we
allowed different estimates for adult and paediatric patients
at each iteration. Boxplots in Fig. 3 are the %RE for the
estimates of the paediatric patients only, where in iteration 1
we have the first batch of 5 pediatric patients, iteration 2 the
first and second batch of 10 pediatric patients till iteration 5
with all the five batches of 25 paediatric patients. In our
proposed D-optimal ABS, the simulation of the next batch
of target-population data is under the optimal design based on
the pooled model that fit to the pooled data set. The trend in
Fig. 3 showed that sampling follow the design optimized at the
pooled model estimates in the interim iteration result in data
that stabilized the parameter estimation of the target-
population with less estimation bias.

A comparison of the %RE for the parameter estimates in
the last iteration of the D-optimal ABS (labelled as Iter 5),
with the estimates obtained if we applied the D-optimal

design located for the adult patient model x 1f g
� �

directly

to study the 25 paediatric patients (labelled as ND (Naive
Design)), and the estimates obtained if the study design of the
paediatric patients was optimized at the target-population
(paediatric patients) nominal mean (labelled as T to T (Target
to Target)) are shown in Fig. 4. The study design optimised at
the paediatric patient nominal mean (ξT) is a sampling sched-
ule at 0.41, 3.26, 10.05 and 15.23 h post-dose. The estimates
in the last iteration of the D-optimal ABS are not inferior in
this simulation scenario. We also see that, in this positive
control scenario, optimized for the target based on a model

Table II Nominal Parameter Mean and Variance for Normal Weight Adult
Patient and Obese Adult Patient

θ2 mnormal weight mobese Ω2

CL 4 5.2 0.2 0 0 0

V 20 30 0 0.2 0 0

MTT 3 20 0 0 0.2 0

N 2 20 0 0 0 0
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fitted to the prior population data set (Naïve Design) was
almost as accurate as if the target were known a priori. Since
the PK profile for the prior and target in this scenario are
similar as shown in Fig. 1a.

The relative standard error (RSE%) of the estimates of
the parameters for the paediatric bridging study when the
study design is the optimal design at adult nominal mean
values (ξP00.41, 3.64, 12.72 and 20.82 h post-dose) and
when the study design is the optimal design at the paediatric
nominal mean values (ξT00.41, 3.26, 10.05 and 15.23 h
post-dose) are presented in Table III. The RSE% values
were computed from the Fisher information matrix given by
POPT. The RSE% for all the parameters were comparable
for ξP and ξT for this hypothetical example. Note in this
hypothetical example a geometric six time points design was
used to simulate data from the prior population instead
of ξP.

One hundred simulations were carried out to access the
criterion for the early full enrolment. We have assumed the
same number of patients (200 adults and 25 paediatric) and

the same number of batches (five). Seventy five simulated
clinical studies had achieved 80% efficiency with the first
batch paediatric patients and 25 with two batches. Thus the
remaining paediatric patients can be enrolled followed the
current product optimal design xprod D. The adaptive design
with the early full enrolment criterion allows a quick “jump”
to full enrolment in this simulation study which is again due
to the fact that the prior- and target-populations have similar
PK profile.

Simulation Scenario 2: D-optimal ABS
from Normal Weight Adult to Obese Adult

The %RE of the estimates of CL, V, MTT, N, w2
CL , w

2
V ,

w2
MTT , σ2

"P
and σ2

"a
in each iteration of the five batches

arithmetic accumulation D-optimal ABS for obese patient
are shown in Fig. 5. These are the estimation result using the
covariate model (The D-optimal ABS was carried out using
the pooled model and the purpose of covariate model is

Fig. 2 Boxplots of percentage relative error (%RE) for pooled model estimates with five batches arithmetic accumulation in simulation scenario 1.
Structural parameters clearance (CL), volume of distribution (V) and absorption rate constant (ka). Statistical parameters between subject variability (BSV) for
CL w2

CL

� �
, V w2

V

� �
and ka w2

ka

� �
. Residual unexplained variability variance of the proportional error σ2

"p

� �
and additive error σ2

"a

� �
. The horizontal line within

each subplot is the zero percentage. There are five iterations in this simulation, which is labelled as I1 to I5.
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for the evaluation and illustration). As seen in Fig. 5, the
estimates approached the true parameter values gradually
at each iteration. The comparison of the %RE of esti-
mates in the final iteration of the five batches arithmetic
accumulation D-optimal ABS (labelled as Iter 5), with
the %RE of estimates obtained if the eight sampling
time point D-optimal design optimized at normal weight

patient model x 1f g
� �

was used as the study design for

all the obese patients (labelled as ND), and the %RE of
estimates obtained if the study design for obese patient
is a eight sampling time point D-optimal design opti-
mized at the target-population nominal mean (labelled
as T to T) are shown in Fig. 6. The study design
optimised at the obese patient nominal mean xTð Þ is a sam-
pling schedule with one sample each at 15.1, 22.6, 23.1 h post-
dose, two repeated samples at 28.1 h post-dose and three
repeated samples at 42.6 h post-dose. The estimates of the
fifth iteration in the D-optimal ABS is less bias for all the
parameters if compared to the estimates when the study

design is x 1f g . The fifth iteration estimates are however not
as good as the estimates obtained if the study design is the D-
optimal design optimized at the obese population nominal
mean (ξT). However, the population mean values are not
known in reality and thus it is impossible to optimize a design
at these values.

The relative standard error (RSE%) of the parameter
estimates for the obese bridging study when the study design
was the optimal design at the normal weight adults nominal

mean (ξP, which is the same as x 0f gin this simulation scenar-
io, with a sampling schedule at 1.1, 1.6, 4.1, 4.6, 8.1, 8.6,
20.1, 20.1 h post-dose), and when the study design is the
optimal design at the obese adult nominal mean values
(ξT, a sampling schedule with one sample each at 15.1,
22.6, 23.1 h post-dose, two repeated samples at 28.1 h
post-dose and three repeated samples at 42.6 hours
post-dose) were presented in Table IV. The RSE%
values were computed from the population Fisher infor-
mation matrix using POPT. We can clearly see that the

Fig. 3 Boxplots of the percentage relative error (%RE) for covariate model estimates of paediatric patients when a covariate is added to the pooled data set
to indicate which population the patient belong to. Structural parameters clearance (CL), volume of distribution (V) and absorption rate constant (ka).
Statistical parameters between subject variability (BSV) for CL w2

CL

� �
, V w2

V

� �
and ka w2

ka

� �
. Residual unexplained variability variance of the proportional error

σ2
"p

� �
and additive error σ2

"a

� �
. The horizontal line within each subplot is the zero percentage. There are five iterations in this simulation, which is labelled as

I1 to I5.

1538 Foo and Duffull



relative standard errors are large when ξP is applied to
study the obese population.

In Fig. 6 bias is noticed in the estimates of CL, V, N, w2
CL

and w2
MTT even when the study design for the obese patient

group is the D-optimal design at the target-population

nominal mean (shown as T to T in Fig. 6). A simulation-
estimation study was carried out to evaluate the influence of
the design on parameter estimation using NONMEM for
the transit compartment model. The study design is chosen
to be an intensive design with 15 samples per patient. By
referring to the PK profile in Fig. 1b, the sampling times
were chosen to be 10.25, 10.5, 11, 12, 13, 14, 16, 18, 20, 22,
26, 30, 36, 42 and 48 h post-dose for a design that covers the
whole PK range of the obese patient. The simulation was
carried out in Matlab and estimation in NONMEM (FOCE
with interaction) for 100 studies. The boxplot for the %RE
of the 100 estimates is provided as a supplement. There
remains apparent bias in the estimates of N which is down-
wardly biased. These boxplots showed that estimates from
NONMEM are reasonable with informative data that de-
rived from an intensive design that covered the whole PK
profile. The bias in N may be caused by the high nonline-
arity associated with this parameter.

One hundred simulations were carried out for arithmetic
accumulation of obese patients to access the criterion proposed
for the early full enrolment. We assumed 60 obese patients
which initially divided into five batches with 12 patients per
batch. Ninety seven simulations achieved 80% efficiency after

Fig. 4 Boxplots of percentage relative error (%RE) for final estimates in simulation scenario 1. “Iter 5” represents estimates obtained in the fifth iteration of
the D-optimal ABS. “ND” represents estimates obtained if the four sampling time point D-optimal design located for the adult patients estimates is applied
directly to study the paediatric patients. “T to T” represents estimates obtained if the study design for paediatric patients is the four sampling time point D-
optimal design optimized at the paediatric population nominal mean values. Structural parameters clearance (CL), volume of distribution (V) and absorption
rate constant (ka). Statistical parameters between subject variability (BSV) for CL w2

CL

� �
, V w2

V

� �
and ka w2

ka

� �
. Residual unexplained variability variance of the

proportional error σ2
"p

� �
and additive error σ2

"a

� �
. The horizontal line within each subplot is the zero percentage.

Table III The Relative Standard Error (RSE%) of the Estimates on the
Paediatric Population When the Study Design is the Optimal Design at Adult
Nominal Mean Values (xP) and When the Study Design is the Optimal Design
at the Paediatric Nominal Mean Values (xT). The RSE% was Computed from
the Population Fisher Information Matrix and was Given by POPT

Parameter RSE%

xP xT

CL 9.63 8.99

V 14.2 13.8

ka 19.7 19.9
w2
CL 70.2 55.1

w2
V 86.4 77.9

w2
ka 196 191

σ2
"p 26.0 24.0

σ2
"a 14.1 18.8
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the third batch of obese patients. One simulation achieved the
desired efficiency after two batches and one after four batches.
One simulation study will need all five batches to achieve 80%
efficiency. All remaining obese patients in each of the 100
simulation studies were simulated accordingly followed the
corresponding xprod D when the desired efficiency was
achieved. Figure 7 compared the %RE of the final estimates
obtained with the early full enrolment procedure (labelled as

Final Iter) with the estimates obtained when the x 1f g is applied
to study the 60 obese patients in one-go (labelled as ND) and
the estimates obtained when the study design for the 60 obese
patients is the eight time point D-optimal design optimized at
the obese patient nominal mean (labelled as T to T). The
estimates obtained with early full enrolment procedure are

more accurate as compared to the estimates using x 1f g as the
study design for all obese patients.

DISCUSSION

The current practice of PK bridging studies uses the study
design based solely on the prior-population PK model. This
may yield good estimates for the target-population PK if the
target-population PK profile is similar to the prior-population
PK as in the case of simulation scenario 1. However, if the
target-population PK profile is unexpectedly divergent from
the prior-population as in the case of scenario 2, the design
optimized at the prior-population PK will be suboptimal and

Fig. 5 Boxplots of the percentage relative error (%RE) for covariate model estimates of obese patients with five batches arithmetic
accumulation. A covariate is added to the pooled data set to indicate which population the patient belong to. Structural parameters clearance
(CL), volume of distribution (V), mean transit time (MTT) and number of transit compartments (N). Statistical parameters between subject

variability (BSV) for CL w2
CL

� �
, V w2

V

� �
and MTT w2

MTT

� �
. Residual unexplained variability variance of the proportional error σ2

"p

� �
and additive

error σ2
"a

� �
. The horizontal line within each subplot is the zero percentage. There are five iterations in this simulation, which is labelled as I1 to I5.
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possibly result in experimental failure. Nevertheless, the sce-
narios are contrived and this evidence should not be used to
suggest that paediatric bridging studies always show virtual
superimposition of the prior and target PK profile and obese
studies are always divergent.

We have proposed a method to carry out bridging studies
adaptively by using the pooled data set in the interim iteration
to stabilize the data analysis and to avoid bias estimates caused
by small numbers of target-population data in the early iter-
ations. However, the proposed method merely provides an
exploration of the design method. The statistical properties of
this method have not been studied.

Two types of models were fitted to the pooled data
set in the simulation studies for the D-optimal ABS.
The pooled model is fitted to the data set without
considering if the patient arises from the prior- or
target-populations. In contrast, the covariate model is
fitted to the data set that explicitly allows for the pos-
sibility that the two populations estimates may differ. In
this study we have optimized the design based on the

estimates from the pooled model for the D-optimal
ABS. In this setting the interim estimate of variance
will be inaccurate due to potential bimodality. The
purpose of fitting a covariate model in the D-optimal
ABS is to show how the estimates in the target-population
approach to the real parameter value although the design is
optimized at the estimates from the pooled model.

From the simulation studies, we see that the estimates
approached to the true target-population parameter values
with the accumulated target-population data replaced the
prior-population data. A D-optimal design obtained by maxi-
mizing the information based on the updated estimates ensured
more accurate estimation of the target-population PKmodel at
the final iteration. The proposed D-optimal ABS was shown to
be not inferior when the prior- and target-population have
similar PK profile and provide better estimates when
the PK profile of the target-population is widely apart
from the prior-population. The geometric accumulation
method (result not shown) showed the same outcome as
the arithmetic accumulation when applied to scenario 2,

Fig. 6 Boxplots of percentage relative error (%RE) for final estimates in simulation scenario 2 with five batches arithmetic accumulation. “Iter 5” represents
estimates obtained in the fifth iteration of the D-optimal ABS. “ND” represents estimates obtained if the eight sampling time point D-optimal design located
for the normal weight patients estimates is applied directly to study the obese patients. “T to T” represents estimates obtained if the obese patients study
design is the eight sampling time point D-optimal design optimized at the obese population nominal mean values. Structural parameters clearance (CL),
volume of distribution (V), mean transit time (MTT) and number of transit compartments (N). Statistical parameters between subject variability (BSV) for CL

w2
CL

� �
, V w2

V

� �
andMTT w2

MTT

� �
. Residual unexplained variability variance of the proportional error σ2

"p

� �
and additive error σ2

"a

� �
. The horizontal line within

each subplot is the zero percentage.
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again the final iteration of D-optimal ABS was more
accurate as compared to design the studies based solely on the

prior-population estimates x 1f g
� �

:

Our simulation result of the proposed criterion for deter-
mining early full enrolment by comparing the D-efficiency (of a
product design and a local design) after inclusion of each new
batch data showed that we can achieve the desired efficiency at
an earlier stage if the PK profile of the prior- and target-
populations are deemed to be similar. However more batches
are needed if the prior- and target-populations have widely
diverged PK profile. Although here we used a value of
efficiency of 0.8, the choice of efficiency will be up to
the researcher and the specific case at hand. In this
project we have assumed a fixed number of target-
population patients but the corollary scenario could be
explored where the sample size of the batch and the total
sample size of the target population could be optimised.

We have used the local D-optimal design in this study which
means the design for the next batch is optimized at current batch
estimates without incorporate uncertainty in the estimate values.
A possible variation of the method could be to use a robust
optimal design on the estimates of the target-population data
from the covariate model. The standard errors of the estimates
can be determined at each iteration and a possible stopping
criterion explored is when the standard errors are less than a
preset value. However, the D-optimal ABS is naturally robust

Table IV The Relative Standard Error (RSE%) of the Estimates on the Obese
Population when the Study Design is the Optimal Design at Normal Weight
Adult Nominal Mean Values (xP) and When the Study Design is the Optimal
Design at the Obese Adult Nominal Mean Values (xT). The RSE% was
Computed from the Population Fisher Information Matrix and was Given by
POPT

Parameter RSE%

xP xT

CL 7×108 6.54

V 8×108 12.2

MTT 6×107 6.12

N 2×107 13.5
w2
CL 1×107 23.0

w2
V 8×106 46.2

w2
MTT 8×104 19.4

σ2
"p 14.3 9.16

σ2
"a 3.91 6.16

Fig. 7 Boxplots of percentage relative error (%RE) for final estimates in simulation scenario 2. “Final Iter” represents final estimates obtained with the early full
enrollment criterion, “ND” represents estimates obtained if the eight sampling time point D-optimal design located for the normal weight patients estimates is
applied directly to study the obese patients. “T to T” represents estimates obtained if the obese patients study design is the eight sampling time point D-optimal
design optimized at the obese population nominal mean values. Structural parameters clearance (CL), volume of distribution (V), mean transit time (MTT) and
number of transit compartments (N). Statistical parameters between subject variability (BSV) for CL w2

CL

� �
, V w2

V

� �
and MTT w2

MTT

� �
. Residual unexplained

variability variance of the proportional error σ2
"p

� �
and additive error σ2"a

� �
. The horizontal line within each subplot is the zero percentage.
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since it does not rely on the assumption that the prior- and target-
populations are similar. Hence adding uncertainty on the
updated estimate values at each iteration seems to be unneces-
sary and would incur extra expense to the optimal design.

CONCLUSION

In PK bridging studies it is usual to make the assumption that
the PK profile of the target-population is similar to the prior-
population. There is no way to test this assumption a priori and
of concern is the risk of poorly efficient study, or perhaps study
failure, if the two populations are sufficiently dissimilar. An
adaptive D-optimal bridging study as described here provides
an alternative approach and does not require any assumptions
about the degree of similarity between the prior- and target-
populations. A method to optimize the adaptive process was
also explored which provide relevant early full enrolment
condition for the target-population patients.
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